A NEW CLASS OF HIGHLY POTENT AND SELECTIVE ENDOMORPHIN-1 ANALOGUES CONTAINING α -METHYLENE- β -AMINOPROPANOIC ACIDS (MAP)

Yuan Wang, Yanhong Xing, Xin Liu, Hong Ji, Ming Kai, Zongyao Chen, Jing Yu, Depeng Zhao, Hui Ren, Rui Wang

Presented by Celeste Alverez 7/28/2012

J. Med. Chem. **2012**, *55*, 6224.

- One of the most important systems for analgesia (pain relief)
- Composed of 4 subtypes of receptors:
 - \square μ (MOR), κ (KOR), δ (DOR), Nociceptin (NOP)
- □ Ligands:
 - Endogenous peptides:
 - Dynorphins, Enkephalins, Endorphins, Endomorphins, and Nociceptin
 - Exogenous:
 - Morphine, heroin, hydrocodone, codine, fentanyl, methadone, ect.

Annu. Rev. Biochem. 2004, 73, 953.

Mechanism of opioid action

Clin. Rheumatol. 2006, 25 (Suppl 1), S9.

- Can occur with both endogenous and exogenous opioids
- □ Side effects:
 - Drowsiness
 - Nausea
 - Muscle spasms
 - Difficulty urinating
 - Constipation
 - Addiction
 - Respiratory depression

2 types: endomorphin-1 and endomorphin-2

- Have analgesic properties with less undesired effects
 - Less potential for addiction
 - Less potential for respiratory depression
 - Less potential for cardiovascular complications

Med. Res. Rev. 2012, 32, 536.

- □ Obstacles to drugability of EMs:
 - Not orally avaliable
 - Short duration of action
 - Poor metabolic stability
 - Poor blood-brain barrier permability/Poor CNS avaliability
- □ Attempted solutions:
 - □ Unnatural amino acid substitution (D- $/\beta$ -amino acids, amino acid mimetics, alkylated amino acids)
 - Cyclization
 - Glycosylation
 - Conjugation to transportable lipids

Med. Res. Rev. 2012, 32, 536.

Synthesis of α -methylene- β -amino acids (Map)

7

1. NaOMe, THF, -15°C,

2. paraformaldehyde, -15°C, 8 h

89-93%

Radioligand binding and selectivity

Table 2. Opioid Receptor Binding Affinities and in Vitro Pharmacological Activity of EMs and Analogues

					IC ₅₀ (nM) ^d		
peptide	sequence	$K_{i}^{\mu} (nM)^{\alpha,c}$	$K_{i}^{\delta} \left(\mathrm{nM} \right)^{b,c}$	selectivity $K_{\rm i}^{\delta}/ K_{\rm i}^{\mu} $	GPI	MVD	MVD/GPI*
1	${\bf Tyr\text{-}Pro\text{-}Trp\text{-}Phe\text{-}NH}_2$	2.60 ± 0.21	6080 ± 640	2338	14.1 ± 1.7	30.4 ± 2.6	2.2
2	${ m Tyr} ext{-}{ m Pro} ext{-}{ m Phe} ext{-}{ m Phe} ext{-}{ m NH}_2$	3.20 ± 0.13	6420 ± 330	2006	9.33 ± 1.12	21.6 ± 3.4	2.3
3	${\bf Tyr\text{-}Pro\text{-}(Ph)Map\text{-}Phe\text{-}NH}_2}$	103 ± 2	59290 ± 5680	576	20.9 ± 2.37	>10000	
4	Tyr-Pro-Trp-(Ph)Map-NH ₂	0.535 ± 0.076	56010 ± 5180	104692	6.81 ± 0.80	7.53 ± 1.22	1.1
5	${\bf Tyr\text{-}Pro\text{-}(Ph)Map\text{-}(Ph)Map\text{-}NH}_2$	15.7 ± 0.4	10980 ± 1680	699	38.1 ± 1.2	166 ± 34	4.4
6	Tyr -Pro- Trp - $(4$ -FPh $)$ Map- NH_2	13.7 ± 0.9	17040 ± 2050	1244	31.5 ± 1.5	130 ± 14	4.1
7	Tyr -Pro- Trp - $(4$ - $ClPh)Map$ - NH_2	7.12 ± 1.05	10810 ± 1340	1518	15.3 ± 3.2	36.7 ± 7.0	2.4
8	$Tyr-Pro-Trp-(3-ClPh)Map-NH_2$	3.49 ± 0.25	5820 ± 450	1668	7.66 ± 0.51	69.4 ± 7.4	9.1
9	Tyr -Pro- Trp - $(2$ -ClPh $)$ Map- NH_2	5.48 ± 0.38	14930 ± 1620	2724	16.6 ± 3.7	365 ± 14	22
10	$ ext{Tyr-Pro-Trp-(4-MeOPh)Map-NH}_2$	4.83 ± 0.91	10200 ± 1430	2112	84.2 ± 2.0	299 ± 14	3.6
11	Tyr-Pro-Trp-(piperonyl) $Map-NH_2$	7.73 ± 1.02	18690 ± 1330	2418	14.3 ± 1.7	432 ± 10	30
12	$Tyr-Pro-Trp-(2-furyl)Map-NH_2$	0.221 ± 0.014	50010 ± 2880	226290	2.92 ± 0.31	15.8 ± 0.9	5.4
13	Tyr -Pro- Trp -(3-furyl) Map - NH_2	0.274 ± 0.066	50930 ± 6710	185876	3.94 ± 0.60	10.2 ± 1.2	2.6
14	$Tyr-Pro-Trp-(1-naphthyl)Map-NH_2$	26.0 ± 3.5	84680 ± 10490	3264	33.9 ± 6.2	84.4 ± 6.8	2.5
15	${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(2\text{-}naphthyl)Map\text{-}NH}_2$	27.4 ± 0.8	84850 ± 9650	3097	18.2 ± 3.8	141 ± 6	7.7

In vitro activity

Table 2. Opioid Receptor Binding Affinities and in Vitro Pharmacological Activity of EMs and Analogues

		•				$IC_{50} (nM)^d$	
peptide	sequence	$K_{\mathbf{i}}^{\mu} (\mathbf{n}\mathbf{M})^{a,c}$	$K_{\mathbf{i}}^{\delta}\left(\mathbf{n}\mathbf{M}\right)^{\mathcal{B}_{\mathbf{i}^{\mathcal{C}}}}$	selectivity $K_{ m i}^{\delta}/ K_{ m i}^{\mu} $	GPI	MVD	MVD/GPI*
1	Tyr-Pro-Trp-Phe-N \mathbb{H}_2	2.60 ± 0.21	6080 ± 640	2338	14.1 ± 1.7	30.4 ± 2.6	2.2
2	$Tyr ext{-}Pro ext{-}Phe ext{-}Phe ext{-}NH_2$	3.20 ± 0.13	6420 ± 330	2006	9.33 ± 1.12	21.6 ± 3.4	2.3
3	${\it Tyr-Pro-(Ph)Map-Phe-NH}_2$	103 ± 2	59290 ± 5680	576	20.9 ± 2.37	>10000	
4	Tyr-Pro-Trp-(Ph)Map-NH ₂	0.535 ± 0.076	56010 ± 5180	104692	6.81 ± 0.80	7.53 ± 1.22	1.1
5	$Tyr-Pro-(Ph)Map-(Ph)Map-NH_2$	15.7 ± 0.4	10980 ± 1680	699	38.1 ± 1.2	166 ± 34	4.4
6	Tyr -Pro- Trp - $(4$ -FPh $)$ Map- NH_2	13.7 ± 0.9	17040 ± 2050	1244	31.5 ± 1.5	130 ± 14	4.1
7	Tyr-Pro-Trp-(4-ClPh)Map-NH ₂	7.12 ± 1.05	10810 ± 1340	1518	15.3 ± 3.2	36.7 ± 7.0	2.4
8	Tyr-Pro-Trp-(3-ClPh)Map-NH ₂	3.49 ± 0.25	5820 ± 450	1668	7.66 ± 0.51	69.4 ± 7.4	9.1
9	Tyr-Pro-Trp-(2-ClPh)Map-NH ₂	5.48 ± 0.38	14930 ± 1620	2724	16.6 ± 3.7	365 ± 14	22
10	Tyr -Pro- Trp - $(4$ -MeOPh $)$ Map- NH_2	4.83 ± 0.91	10200 ± 1430	2112	84.2 ± 2.0	299 ± 14	3.6
11	Tyr-Pro-Trp-(piperonyl)Map-NH $_2$	7.73 ± 1.02	18690 ± 1330	2418	14.3 ± 1.7	432 ± 10	30
12	Tyr-Pro-Trp-(2-furyl)Map-NH ₂	0.221 ± 0.014	50010 ± 2880	226290	2.92 ± 0.31	15.8 ± 0.9	5.4
13	Tyr -Pro- Trp - $(3$ -furyl) Map - NH_2	0.274 ± 0.066	50930 ± 6710	185876	3.94 ± 0.60	10.2 ± 1.2	2.6
14	$Tyr-Pro-Trp-(1-naphthyl)Map-NH_2$	26.0 ± 3.5	84680 ± 10490	3264	33.9 ± 6.2	84.4 ± 6.8	2.5
15	${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(2\text{-}naphthyl)Map\text{-}NH}_2$	27.4 ± 0.8	84850 ± 9650	3097	18.2 ± 3.8	141 ± 6	7.7

Table 3. Functional Activity of EMs and Analogues^a

peptide	sequence	EC _{so} (nM)	$E_{ m max}$ (%)
0	DAMGO	3.04 ± 0.32	98.14 ± 6
1	Tyr-Pro-Trp-Phe-N $ m H_2$	14.40 ± 0.62	83.13 ± 4
2	Tyr-Pro-Phe-Phe-N ${ m H_2}$	11.80 ± 0.23	82.75 ± 4
3	${\bf Tyr\text{-}Pro\text{-}(Ph)Map\text{-}Phe\text{-}NH}_2$	36.50 ± 2.45	70.78 ± 2
4	Tyr -Pro- Trp - $(Ph)Map$ - NH_2	0.16 ± 0.09	97.94 ± 3
5	Tyr-Pro-(Ph)Map-(Ph)Map-NH ₂	45.09 ± 4.01	60.26 ± 6
6	${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(4\text{-}FPh)Map\text{-}NH}_2$	7.35 ± 1.02	81.45 ± 6
7	Tyr-Pro-Trp-(4-ClPh)Map-NH ₂	12.00 ± 0.98	85.57 ± 11
8	Tyr-Pro-Trp-(3-ClPh)Map-NH ₂	0.72 ± 0.08	92.53 ± 4
9	Tyr-Pro-Trp- $(2$ -ClPh $)$ Map-N H_2	0.84 ± 0.03	82.57 ± 4
10	Tyr-Pro-Trp- (4-MeO) Map-NH $_2$	10.91 ± 0.83	85.56 ± 3
11	Tyr-Pro-Trp-(Piperonyl)Map-NH ₂	10.70 ± 1.09	83.90 ± 5
12	Tyr-Pro-Trp-(2-Furyl)Map-NH ₂	0.0334 ± 0.0012	97.14 ± 5
13	${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(3\text{-}Furyl)Map\text{-}NH}_2$	0.0342 ± 0.0018	98.73 ± 5
14	Tyr -Pro- Trp - $(1$ -Naphthyl) Map -N H_2	72.30 ± 6.00	71.01 ± 4
15	Tyr-Pro-Trp-(2-Naphthyl)Map-NH ₂	70.34 ± 4.67	67.46 ± 5

7/28/2012

7/29/2012

Downstream effects

Analgesic effects

Table 4. In Vivo Antinociceptive Activities of EM-1 and Its Analogues Given icv To Produce Tail-Flick Inhibition in the Mouse

peptide	ED ₅₀ a (nmol/kg)
1	15.2 (13.1-19.3)
4	2.33 (1.74-3.03)
8	9.28 (6.66-12.5)
12	1.42 (1.11-1.88)
13	1.55 (1.09-2.06)

Analgesic effects

Stability

Table 5. Half-Lives of EM-1 and Its Potent Analogues in Mouse-Brain Membrane Homogenate $^\alpha$

peptide	$100 imes k (min^{-1})^b$	half-life"
1	4.10 ± 0.14	16.9 ± 1.2
4	1.11 ± 0.05	62.4 ± 3.1
8	0.77 ± 0.18	89.9 ± 9.3
12	0.81 ± 0.19	85.9 ± 9.2
13	0.78 ± 0.22	88.3 ± 8.2

Molecular modeling

Summary

- Developed a class of highly potent MOR selective agonists utilizing constrained unnatural β-amino acids (Map) into EM-1
- Analogues with the Map located at the 4-position (C-terminal end) were more active than those with the substitution at the 3-position
- The furan containing analogues were the most potent, effective, and stable tested
- There may be potential use of EMs modified with constrained β-amino acids as analgesics lacking some of the classical side effects of current opioid drugs