A NEW CLASS OF HIGHLY POTENT AND SELECTIVE ENDOMORPHIN-1 ANALOGUES CONTAINING α -METHYLENE- β -AMINOPROPANOIC ACIDS (MAP) Yuan Wang, Yanhong Xing, Xin Liu, Hong Ji, Ming Kai, Zongyao Chen, Jing Yu, Depeng Zhao, Hui Ren, Rui Wang Presented by Celeste Alverez 7/28/2012 J. Med. Chem. **2012**, *55*, 6224. - One of the most important systems for analgesia (pain relief) - Composed of 4 subtypes of receptors: - \square μ (MOR), κ (KOR), δ (DOR), Nociceptin (NOP) - □ Ligands: - Endogenous peptides: - Dynorphins, Enkephalins, Endorphins, Endomorphins, and Nociceptin - Exogenous: - Morphine, heroin, hydrocodone, codine, fentanyl, methadone, ect. Annu. Rev. Biochem. 2004, 73, 953. #### Mechanism of opioid action Clin. Rheumatol. 2006, 25 (Suppl 1), S9. - Can occur with both endogenous and exogenous opioids - □ Side effects: - Drowsiness - Nausea - Muscle spasms - Difficulty urinating - Constipation - Addiction - Respiratory depression 2 types: endomorphin-1 and endomorphin-2 - Have analgesic properties with less undesired effects - Less potential for addiction - Less potential for respiratory depression - Less potential for cardiovascular complications Med. Res. Rev. 2012, 32, 536. - □ Obstacles to drugability of EMs: - Not orally avaliable - Short duration of action - Poor metabolic stability - Poor blood-brain barrier permability/Poor CNS avaliability - □ Attempted solutions: - □ Unnatural amino acid substitution (D- $/\beta$ -amino acids, amino acid mimetics, alkylated amino acids) - Cyclization - Glycosylation - Conjugation to transportable lipids Med. Res. Rev. 2012, 32, 536. # Synthesis of α -methylene- β -amino acids (Map) 7 1. NaOMe, THF, -15°C, 2. paraformaldehyde, -15°C, 8 h 89-93% ### Radioligand binding and selectivity Table 2. Opioid Receptor Binding Affinities and in Vitro Pharmacological Activity of EMs and Analogues | | | | | | IC ₅₀ (nM) ^d | | | |---------|---|-------------------------------|---|--|------------------------------------|-----------------|----------| | peptide | sequence | $K_{i}^{\mu} (nM)^{\alpha,c}$ | $K_{i}^{\delta} \left(\mathrm{nM} \right)^{b,c}$ | selectivity $K_{\rm i}^{\delta}/ K_{\rm i}^{\mu} $ | GPI | MVD | MVD/GPI* | | 1 | ${\bf Tyr\text{-}Pro\text{-}Trp\text{-}Phe\text{-}NH}_2$ | 2.60 ± 0.21 | 6080 ± 640 | 2338 | 14.1 ± 1.7 | 30.4 ± 2.6 | 2.2 | | 2 | ${ m Tyr} ext{-}{ m Pro} ext{-}{ m Phe} ext{-}{ m Phe} ext{-}{ m NH}_2$ | 3.20 ± 0.13 | 6420 ± 330 | 2006 | 9.33 ± 1.12 | 21.6 ± 3.4 | 2.3 | | 3 | ${\bf Tyr\text{-}Pro\text{-}(Ph)Map\text{-}Phe\text{-}NH}_2}$ | 103 ± 2 | 59290 ± 5680 | 576 | 20.9 ± 2.37 | >10000 | | | 4 | Tyr-Pro-Trp-(Ph)Map-NH ₂ | 0.535 ± 0.076 | 56010 ± 5180 | 104692 | 6.81 ± 0.80 | 7.53 ± 1.22 | 1.1 | | 5 | ${\bf Tyr\text{-}Pro\text{-}(Ph)Map\text{-}(Ph)Map\text{-}NH}_2$ | 15.7 ± 0.4 | 10980 ± 1680 | 699 | 38.1 ± 1.2 | 166 ± 34 | 4.4 | | 6 | Tyr -Pro- Trp - $(4$ -FPh $)$ Map- NH_2 | 13.7 ± 0.9 | 17040 ± 2050 | 1244 | 31.5 ± 1.5 | 130 ± 14 | 4.1 | | 7 | Tyr -Pro- Trp - $(4$ - $ClPh)Map$ - NH_2 | 7.12 ± 1.05 | 10810 ± 1340 | 1518 | 15.3 ± 3.2 | 36.7 ± 7.0 | 2.4 | | 8 | $Tyr-Pro-Trp-(3-ClPh)Map-NH_2$ | 3.49 ± 0.25 | 5820 ± 450 | 1668 | 7.66 ± 0.51 | 69.4 ± 7.4 | 9.1 | | 9 | Tyr -Pro- Trp - $(2$ -ClPh $)$ Map- NH_2 | 5.48 ± 0.38 | 14930 ± 1620 | 2724 | 16.6 ± 3.7 | 365 ± 14 | 22 | | 10 | $ ext{Tyr-Pro-Trp-(4-MeOPh)Map-NH}_2$ | 4.83 ± 0.91 | 10200 ± 1430 | 2112 | 84.2 ± 2.0 | 299 ± 14 | 3.6 | | 11 | Tyr-Pro-Trp-(piperonyl) $Map-NH_2$ | 7.73 ± 1.02 | 18690 ± 1330 | 2418 | 14.3 ± 1.7 | 432 ± 10 | 30 | | 12 | $Tyr-Pro-Trp-(2-furyl)Map-NH_2$ | 0.221 ± 0.014 | 50010 ± 2880 | 226290 | 2.92 ± 0.31 | 15.8 ± 0.9 | 5.4 | | 13 | Tyr -Pro- Trp -(3-furyl) Map - NH_2 | 0.274 ± 0.066 | 50930 ± 6710 | 185876 | 3.94 ± 0.60 | 10.2 ± 1.2 | 2.6 | | 14 | $Tyr-Pro-Trp-(1-naphthyl)Map-NH_2$ | 26.0 ± 3.5 | 84680 ± 10490 | 3264 | 33.9 ± 6.2 | 84.4 ± 6.8 | 2.5 | | 15 | ${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(2\text{-}naphthyl)Map\text{-}NH}_2$ | 27.4 ± 0.8 | 84850 ± 9650 | 3097 | 18.2 ± 3.8 | 141 ± 6 | 7.7 | #### In vitro activity Table 2. Opioid Receptor Binding Affinities and in Vitro Pharmacological Activity of EMs and Analogues | | | • | | | | $IC_{50} (nM)^d$ | | |---------|---|---|---|--|-----------------|------------------|----------| | peptide | sequence | $K_{\mathbf{i}}^{\mu} (\mathbf{n}\mathbf{M})^{a,c}$ | $K_{\mathbf{i}}^{\delta}\left(\mathbf{n}\mathbf{M}\right)^{\mathcal{B}_{\mathbf{i}^{\mathcal{C}}}}$ | selectivity $K_{ m i}^{\delta}/ K_{ m i}^{\mu} $ | GPI | MVD | MVD/GPI* | | 1 | Tyr-Pro-Trp-Phe-N \mathbb{H}_2 | 2.60 ± 0.21 | 6080 ± 640 | 2338 | 14.1 ± 1.7 | 30.4 ± 2.6 | 2.2 | | 2 | $Tyr ext{-}Pro ext{-}Phe ext{-}Phe ext{-}NH_2$ | 3.20 ± 0.13 | 6420 ± 330 | 2006 | 9.33 ± 1.12 | 21.6 ± 3.4 | 2.3 | | 3 | ${\it Tyr-Pro-(Ph)Map-Phe-NH}_2$ | 103 ± 2 | 59290 ± 5680 | 576 | 20.9 ± 2.37 | >10000 | | | 4 | Tyr-Pro-Trp-(Ph)Map-NH ₂ | 0.535 ± 0.076 | 56010 ± 5180 | 104692 | 6.81 ± 0.80 | 7.53 ± 1.22 | 1.1 | | 5 | $Tyr-Pro-(Ph)Map-(Ph)Map-NH_2$ | 15.7 ± 0.4 | 10980 ± 1680 | 699 | 38.1 ± 1.2 | 166 ± 34 | 4.4 | | 6 | Tyr -Pro- Trp - $(4$ -FPh $)$ Map- NH_2 | 13.7 ± 0.9 | 17040 ± 2050 | 1244 | 31.5 ± 1.5 | 130 ± 14 | 4.1 | | 7 | Tyr-Pro-Trp-(4-ClPh)Map-NH ₂ | 7.12 ± 1.05 | 10810 ± 1340 | 1518 | 15.3 ± 3.2 | 36.7 ± 7.0 | 2.4 | | 8 | Tyr-Pro-Trp-(3-ClPh)Map-NH ₂ | 3.49 ± 0.25 | 5820 ± 450 | 1668 | 7.66 ± 0.51 | 69.4 ± 7.4 | 9.1 | | 9 | Tyr-Pro-Trp-(2-ClPh)Map-NH ₂ | 5.48 ± 0.38 | 14930 ± 1620 | 2724 | 16.6 ± 3.7 | 365 ± 14 | 22 | | 10 | Tyr -Pro- Trp - $(4$ -MeOPh $)$ Map- NH_2 | 4.83 ± 0.91 | 10200 ± 1430 | 2112 | 84.2 ± 2.0 | 299 ± 14 | 3.6 | | 11 | Tyr-Pro-Trp-(piperonyl)Map-NH $_2$ | 7.73 ± 1.02 | 18690 ± 1330 | 2418 | 14.3 ± 1.7 | 432 ± 10 | 30 | | 12 | Tyr-Pro-Trp-(2-furyl)Map-NH ₂ | 0.221 ± 0.014 | 50010 ± 2880 | 226290 | 2.92 ± 0.31 | 15.8 ± 0.9 | 5.4 | | 13 | Tyr -Pro- Trp - $(3$ -furyl) Map - NH_2 | 0.274 ± 0.066 | 50930 ± 6710 | 185876 | 3.94 ± 0.60 | 10.2 ± 1.2 | 2.6 | | 14 | $Tyr-Pro-Trp-(1-naphthyl)Map-NH_2$ | 26.0 ± 3.5 | 84680 ± 10490 | 3264 | 33.9 ± 6.2 | 84.4 ± 6.8 | 2.5 | | 15 | ${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(2\text{-}naphthyl)Map\text{-}NH}_2$ | 27.4 ± 0.8 | 84850 ± 9650 | 3097 | 18.2 ± 3.8 | 141 ± 6 | 7.7 | Table 3. Functional Activity of EMs and Analogues^a | peptide | sequence | EC _{so} (nM) | $E_{ m max}$ (%) | |---------|--|-----------------------|------------------| | 0 | DAMGO | 3.04 ± 0.32 | 98.14 ± 6 | | 1 | Tyr-Pro-Trp-Phe-N $ m H_2$ | 14.40 ± 0.62 | 83.13 ± 4 | | 2 | Tyr-Pro-Phe-Phe-N ${ m H_2}$ | 11.80 ± 0.23 | 82.75 ± 4 | | 3 | ${\bf Tyr\text{-}Pro\text{-}(Ph)Map\text{-}Phe\text{-}NH}_2$ | 36.50 ± 2.45 | 70.78 ± 2 | | 4 | Tyr -Pro- Trp - $(Ph)Map$ - NH_2 | 0.16 ± 0.09 | 97.94 ± 3 | | 5 | Tyr-Pro-(Ph)Map-(Ph)Map-NH ₂ | 45.09 ± 4.01 | 60.26 ± 6 | | 6 | ${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(4\text{-}FPh)Map\text{-}NH}_2$ | 7.35 ± 1.02 | 81.45 ± 6 | | 7 | Tyr-Pro-Trp-(4-ClPh)Map-NH ₂ | 12.00 ± 0.98 | 85.57 ± 11 | | 8 | Tyr-Pro-Trp-(3-ClPh)Map-NH ₂ | 0.72 ± 0.08 | 92.53 ± 4 | | 9 | Tyr-Pro-Trp- $(2$ -ClPh $)$ Map-N H_2 | 0.84 ± 0.03 | 82.57 ± 4 | | 10 | Tyr-Pro-Trp- (4-MeO) Map-NH $_2$ | 10.91 ± 0.83 | 85.56 ± 3 | | 11 | Tyr-Pro-Trp-(Piperonyl)Map-NH ₂ | 10.70 ± 1.09 | 83.90 ± 5 | | 12 | Tyr-Pro-Trp-(2-Furyl)Map-NH ₂ | 0.0334 ± 0.0012 | 97.14 ± 5 | | 13 | ${\bf Tyr\text{-}Pro\text{-}Trp\text{-}(3\text{-}Furyl)Map\text{-}NH}_2$ | 0.0342 ± 0.0018 | 98.73 ± 5 | | 14 | Tyr -Pro- Trp - $(1$ -Naphthyl) Map -N H_2 | 72.30 ± 6.00 | 71.01 ± 4 | | 15 | Tyr-Pro-Trp-(2-Naphthyl)Map-NH ₂ | 70.34 ± 4.67 | 67.46 ± 5 | 7/28/2012 7/29/2012 #### Downstream effects #### Analgesic effects Table 4. In Vivo Antinociceptive Activities of EM-1 and Its Analogues Given icv To Produce Tail-Flick Inhibition in the Mouse | peptide | ED ₅₀ a (nmol/kg) | |---------|------------------------------| | 1 | 15.2 (13.1-19.3) | | 4 | 2.33 (1.74-3.03) | | 8 | 9.28 (6.66-12.5) | | 12 | 1.42 (1.11-1.88) | | 13 | 1.55 (1.09-2.06) | #### Analgesic effects # Stability Table 5. Half-Lives of EM-1 and Its Potent Analogues in Mouse-Brain Membrane Homogenate $^\alpha$ | peptide | $100 imes k (min^{-1})^b$ | half-life" | |---------|-----------------------------|----------------| | 1 | 4.10 ± 0.14 | 16.9 ± 1.2 | | 4 | 1.11 ± 0.05 | 62.4 ± 3.1 | | 8 | 0.77 ± 0.18 | 89.9 ± 9.3 | | 12 | 0.81 ± 0.19 | 85.9 ± 9.2 | | 13 | 0.78 ± 0.22 | 88.3 ± 8.2 | ## Molecular modeling #### Summary - Developed a class of highly potent MOR selective agonists utilizing constrained unnatural β-amino acids (Map) into EM-1 - Analogues with the Map located at the 4-position (C-terminal end) were more active than those with the substitution at the 3-position - The furan containing analogues were the most potent, effective, and stable tested - There may be potential use of EMs modified with constrained β-amino acids as analgesics lacking some of the classical side effects of current opioid drugs